число натуральный математика начальный
Программа (традиционная) предусматривает постепенное расширение области рассматриваемых чисел. Концентризм в построении программы неразрывно связан с особенностями десятичной системы счисления и нумерации чисел.
В качестве первого такого концентра выделен «Десяток», о котором в дальнейшем пойдет речь. При изучении этой темы дети знакомятся с первыми десятью числами натурального ряда и действиями сложения и вычитания в этих пределах.
На примере первых десяти чисел натурального ряда дети знакомятся с принципами его построения. Они осознают и усваивают, что для получения числа, следующего за данным, достаточно прибавить единицу к данному числу и что поэтому числа в натуральном ряду возрастают. Эти знания они применяют для сравнения чисел. Они узнают далее, что каждое число (кроме единицы) может быть представлено в виде суммы двух или нескольких слагаемых. Здесь выясняется, что каждое число может быть не только названо, но и записано, что для записи чисел существуют специальные знаки – цифры.
Все эти знания, относящиеся к нумерации, имеют общее значение, дети с самого начала должны подводиться к пониманию общности получаемых выводов.
Наряду с упражнениями, при выполнении которых дети получают число в результате счета предметов, довольно скоро включаются упражнения, которые должны показать детям получение числа в результате измерения (знакомство с сантиметром и измерением отрезка с помощью линейки).
В теме «Десяток» происходит знакомство с числом и цифрой нуль. Таким образом, уже с первых шагов дети имеют дело с расширенным натуральным рядом, хотя и знакомы еще с очень коротким его отрезком.
При переходе к рассмотрению чисел в пределах 100, 1000 и многозначных чисел каждый раз должен осуществляться перенос приобретенных ранее знаний нумерации на новую область чисел. Вместе с тем переход от одного концентра к другому всегда оказывается связанным с введением тех или иных принципиально новых для учащихся знаний.
Каждое дальнейшее расширение области чисел, как правило, всегда связывается с введением новых единиц измерения величин и установления соотношения между ними. Это создает условия, необходимые для того, чтобы подмеченная аналогия в получении чисел при счете и при измерении могла быть в дальнейшем использована.
Итак, выделение концентров в начальном курсе математики дает возможность неоднократно возвращаться к рассмотрению вопросов, связанных с особенностями десятичной системы счисления, устной и письменной нумерации чисел, закрепляя знания детей. Благодаря концентрическому построению программы возникает возможность рассредоточить трудности, в связи с чем в процессе обучения математики можно значительно увеличить долю самостоятельного участия детей в рассмотрении вопросов нумерации, которые при расширении области чисел могут быть ими усвоены на основе «переноса» приобретенных ранее знаний.
Очень важно продуманно и целенаправленно использовать в процессе изучения натурального ряда чисел наглядные пособия. Это одно из условий, помогающих сформировать у детей нужные знания, умения и навыки. Отметим другие моменты, которые должны учитываться при изучении натурального ряда чисел. Учителю следует обратить внимание на речевой опыт, которым располагают многие дети уже ко времени поступления в школу, который быстро обогащается в школьные годы. Дети легко самостоятельно подмечают принцип образования названий чисел и сами догадываются, как будут называться следующие числа (по аналогии).
Статьи по теме:
Периодизация латинских заимствований
Так как основным вопросом данной работы является изучение слов латинского происхождения на уроках русского языка, то, конечно же, нас интересует заимствование именно латинской лексики. Можно выделить ...
Практическое значение социальной педагогики
Как отмечалось в предыдущей главе, социальная педагогика и в теоретическом и, особенно, в практическом плане имеет огромное значение в современном обществе. В начале 90-х гг. в России была введена но ...
Оценка качества постановки вузовской лекции
Необходимость оценки качества лекции возникает во многих случаях. Так, прежде всего, преподаватель, закончив лекцию, может: · сам дать оценку своей лекции с целью их дальнейшей работы по её совершенс ...