Возможны следующие приёмы при введении понятий:
1) можно составить такие упражнения, которые позволяют учащимся быстро сформулировать определение нового понятия.
Например: а) Выписать несколько первых членов последовательности (), у которой =2, . Такая последовательность называется геометрической прогрессией. Попытайтесь сформулировать её определение. Можно ограничиться подготовкой к восприятию нового понятия.
б) Выписать несколько первых членов последовательности (), у которой =4, Далее учитель сообщает, что такая последовательность называется арифметической прогрессией и сам сообщает её определение.
2) при изучении геометрических понятий упражнения формулируются таким образом, чтобы учащиеся построили сами необходимую фигуру и смогли выделить признаки нового понятия, необходимые для формулировки определения.
Например: постройте произвольный треугольник, соедините отрезком его вершину с серединой противоположной стороны. Такой отрезок называется медианой. Сформулируйте определение медианы.
Иногда предлагается составить модель либо, рассматривая готовые модели и чертежи, выделить признаки нового понятия и сформулировать его определение.
Например: введено в 10 классе определение параллелепипеда. По предложенным моделям наклонного, прямого и прямоугольного параллелепипедов выделить признаки, по которым эти понятия различаются. Сформулировать соответствующие определения прямого и прямоугольного параллелепипедов.
3) Многие алгебраические понятия вводятся на основании рассмотрения частных примеров.
Например: графиком линейной функции является прямая.
4) Метод целесообразных задач, (разработан С.И. Шохором-Троцким) С помощью специально подобранной задачи учащиеся приходят к выводу о необходимости введения нового понятия и целесообразности придания ему именно такого смысла, который оно уже имеет в математике.
В 5-6 классах таким методом вводятся понятия: уравнение, корень уравнения, решение неравенств, понятие действий сложения, вычитания, умножения, деления над натуральными числами, десятичными и обыкновенными дробями и т.д.
Конкретно-индуктивный метод
Сущность:
а) рассматриваются конкретные примеры;
б) выделяются существенные свойства;
в) формулируется определение;
г) выполняются упражнения: на распознавание; на конструирование;
д) работа над свойствами, не включёнными в определение;
е) применение свойств.
Например: тема – параллелограммы:
|
Статьи по теме:
Становление педагогики, роли и деятельности педагога, школы в России в ХХ –
начале ХХΙ вв
В послереволюционной России строительство системы школьного образования шло в течение почти десятилетия. С развитием общества все больше и больше государству требовалось умных людей. А для этого с са ...
Обновление дошкольного образования
Закон РФ «Об образовании» закрепил право дошкольных учреждений работать по разнообразным программам. Обращение к личностно-ориентированной педагогике, отход от жестко регламентированных форм воспит ...
Объём и содержание понятия. Классификация понятий
Объекты реальной действительности обладают: а) едиными свойствами, выражающими его отличительные свойства (например, уравнение третьей степени с одной переменной – кубическое уравнение); б) общими св ...