Так как любому непустому конечному множеству соответствует только одно натуральное число, то вся совокупность конечных множеств разбивается на классы равномощных множеств. В одном классе будут содержаться все одноэлементные множества, в другом двухэлементные и т.д. Множества одного класса различны по своей природе, но все они содержат одинаковое число элементов. И это число можно рассматривать как общее свойство класса конечных равномощных множеств.
Таким образом, с теоретико-множественной точки зрения, натуральное число – это общее свойство класса конечных равномощных множеств.
Число «нуль» с теоретико-множественных позиций рассматривается как число элементов пустого множества: 0=n(Ø).
Итак, натуральное число а как характеристику количества можно рассматривать с двух позиций:
1) как число элементов в множестве А, получаемое при счете, т.е. а=n(А), причем А~ Na.
2) Как общее свойство класса конечных равномощных множеств.
Теорема: Любое непустое подмножество конечного множества конечно.
Статьи по теме:
Виды деятельности, используемые на музыкальных занятиях в классах
коррекционно-развивающего обучения
На музыкальных занятиях в классах коррекционно-развивающего обучения используют различные виды деятельности: 1) пение; 2) игру на музыкальных инструментах; 3) психогимнастику. Занятия по музыке значи ...
Качества, необходимые учителю
Профессиональные качества, необходимые учителю принято разделять на объективные (характеризуют подготовку педагога с научной точки зрения) и субъективные (качества, характеризующие педагогический тал ...
Объём и содержание понятия. Классификация понятий
Объекты реальной действительности обладают: а) едиными свойствами, выражающими его отличительные свойства (например, уравнение третьей степени с одной переменной – кубическое уравнение); б) общими св ...