Так как любому непустому конечному множеству соответствует только одно натуральное число, то вся совокупность конечных множеств разбивается на классы равномощных множеств. В одном классе будут содержаться все одноэлементные множества, в другом двухэлементные и т.д. Множества одного класса различны по своей природе, но все они содержат одинаковое число элементов. И это число можно рассматривать как общее свойство класса конечных равномощных множеств.
Таким образом, с теоретико-множественной точки зрения, натуральное число – это общее свойство класса конечных равномощных множеств.
Число «нуль» с теоретико-множественных позиций рассматривается как число элементов пустого множества: 0=n(Ø).
Итак, натуральное число а как характеристику количества можно рассматривать с двух позиций:
1) как число элементов в множестве А, получаемое при счете, т.е. а=n(А), причем А~ Na.
2) Как общее свойство класса конечных равномощных множеств.
Теорема: Любое непустое подмножество конечного множества конечно.
Статьи по теме:
Описание экспериментальной системы уроков по изучению динамики развития синестезии
в речевой деятельности школьников 6, 8, 10 классов
Разработанная нами экспериментальная система по развитию синестезии на уроках развития речи включала в себя комплекс, состоящий из пяти уроков (см. приложение). На первом уроке (констатирующий экспер ...
Эволюция внешкольной работы
Изменения в обществе в 90-е годы привели к глубокому социально-экономическому кризису. На развитии системы образования, в том числе внешкольных учреждений, сказались две группы факторов: и смена ценн ...
Подготовка к исследовательской работе
Исследовательская работа предполагает выбор проблемы, ее теоретическое изучение, опытно-экспериментальную деятельность, обоснование научно-методических выводов и рекомендаций. В университете ее орг ...