Количественные натуральные числа

Натуральные числа имеют две основные функции:

- характеристика количества предметов;

- характеристика порядка предметов, размещенных в ряд.

В соответствии с этими функциями возникли понятия порядкового числа (первый, второй и т.д.) и количественного числа (один, два и т.д.).

Долго и трудно человечество добиралось до 1-го уровня обобщения чисел. Сто веков понадобилось, чтобы выстроить ряд самых коротких натуральных чисел от единицы до бесконечности: 1, 2, …

. Натуральных потому, что ими обозначались (моделировались) реальные неделимые объекты: люди, животные, вещи…

Аксиоматическая теория описывает натуральное число как элемент бесконечного ряда, в котором числа располагаются в определенном порядке, существует первое число и т.д. Иными словами, в аксиоматике раскрывается порядковый смысл натурального числа. Но натуральные числа имеют и количественный смысл. Чтобы выяснить, как связаны между собой эти два смысла натурального числа, рассмотрим такие понятия, как отрезок натурального ряда, конечное множество, счет и другие.

Отрезком Na натурального ряда называется множество натуральных чисел, не превосходящих натурального числа а.

Отрезок натурального ряда имеет два важных свойства:

1) любой отрезок Na содержит единицу. Это свойство вытекает из определения отрезка Na.

2) если число х содержится в отрезке Na и х ≠ а, то и непосредственно следующее за ним число х+1 также содержится в Na.

Множество А называется конечным, если оно равномощно некоторому отрезку Na натурального ряда.

Теорема: всякое непустое конечное множество равномощно одному и только одному отрезку натурального ряда.

Если непустое конечное множество А равномощно отрезку Na, то натуральное число а называют числом элементов множества А и пишут n(A)=a.

Установление взаимно однозначного соответствия между элементами непустого множества А и отрезком натурального ряда называется счетом элементов множества А.

Таким образом, всякое натуральное число а можно рассматривать как характеристику численности некоторого конечного множества А. Натуральное число а имеет при этом количественный смысл.

Статьи по теме:

Методические особенности изучения нарушений в общении родителей и подростков с осложненным поведением
Социальный педагог, хорошо зная семьи с конкретным жизненным укладом и их детей, сочетая коллективные и индивидуальные формы работы с родителями, способствует активизации воспитательных возможностей ...

Методические рекомендации к организации проектной деятельности
Творческий проект выполняется в соответствии с программой и Учебно-методическим планом предмета технологии. Основными целями проектной деятельности является: · развитие активной творческой личности, ...

Экологическое значение проведенного исследования
В комплексе глобальных проблем современного человечества, представляющих концентрированное выражение трудностей и сложностей социального и духовного развития нашей цивилизации, чьё решение требует об ...

Навигация

Copyright © 2025 - All Rights Reserved - www.lighteducator.ru