К основным методам решения задач на построение, изучаемых в средней школе, относятся:
1) Метод геометрических мест.
2) Методы геометрических преобразований:
а) метод центральной симметрии;
б) метод осевой симметрии;
в) метод параллельного переноса;
г) метод поворота;
д) метод подобия;
3) Алгебраический метод.
Перечисленные методы являются одним из видов применения на практике соответствующих геометрических понятий, которые составляют основу каждого из методов. Поэтому без хорошего знания этих понятий учениками не может быть никакой речи об успешном усвоении соответствующих методов. Но, с другой стороны, в силах учителя подобрать такую систему задач на построение и так построить обучение, чтобы решаемые задачи углубляли представление и увеличивали знания школьников о данном понятии, раскрывая его с разных сторон. Задачи при изучении конкретного метода должны подбираться так, чтобы в них как можно более ярко проявлялась суть изучаемого метода, особенно на первоначальном этапе его изучения. При этом если задача решается несколькими методами, то изучаемый метод должен позволять решить задачу наиболее экономно и красиво. Рассмотрим более подробно каждый метод.
Статьи по теме:
Усвоение глухими школьниками системного устройства языка
Язык, применяемый и изучаемый учащимися, является фактором, системообразующим саму методику обучения языку. Первой особенностью языка как знаковой системы является его целостность. Все элементы языка ...
Методика изучения темы «Многоугольники»
В курсе геометрии VI-VIII классов систематически изучаются геометрические фигуры на плоскости, причем большое внимание уделяется многоугольникам, изучению их свойств, рассмотрению величин, характериз ...
Структура определения
Знание определения не гарантирует усвоения понятия. Методическая работа с понятиями должна быть направлена на преодоление формализма, который проявляется в том, что учащиеся не могут распознать опред ...