Заключительный этап формирования понятия – его определение, т.е. принятие условного соглашения. Под определением понимается перечисление необходимых и достаточных признаков понятия, сведённых в связное предложение (речевое или символическое).
Способы определения понятий
Первоначально выделяют неопределяемые понятия, на основании которых определяются математические понятия следующими способами:
1) через ближайший род и видовое отличие: а) дескриптивное (выясняющее процесс, при помощи которого определение построено, или описывающее внутреннее строение в зависимости от тех операций, при помощи которых данное определение было построено из неопределяемых понятий); б) конструктивное (или генетическое), указывающее происхождение понятия.
Например: а) прямоугольник – это параллелограмм, у которого все углы прямые; б) окружностью называется фигура, которая состоит из всех точек плоскости, равноудалённых от данной точки. Эта точка называется центром окружности.
2) индуктивно. Например, определение арифметической прогрессии:
3) через абстракцию. Например, натуральное число – характеристика классов эквивалентных конечных множеств;
4) аксиоматическое (косвенное определение). Например, определение площади фигуры в геометрии: для простых фигур площадь – это положительная величина, численное значение которой обладает следующими свойствами: а) равные фигуры имеют равные площади; б) если фигура разбивается на части, являющиеся простыми фигурами, то площадь этой фигуры равна сумме площадей её частей; в) площадь квадрата со стороной, равной единице измерения, равна единице.
Явные и неявные определения
Определения подразделяются на:
а) явные, в которых чётко выделены определяемое и определяющие понятия (например, определение через ближайший род и видовое отличие);
б) неявные, которые строятся по принципу замены одного понятия другим с более широким объёмом и окончание цепочки есть неопределяемое понятие, т.е. формально-логическое определение (например, квадрат – ромб с прямым углом; ромб – параллелограмм с равными смежными сторонами; параллелограмм – четырёхугольник, с попарно параллельными сторонами; четырёхугольник – фигура, состоящая из 4 углов, 4 вершин, 4 сторон). В школьных определениях чаще всего практикуется первый способ, схема которого такова: имеем множества
и некоторое свойство
тогда
где
,
;
Основное требование при построение определений: определяемое множество должно быть подмножеством минимального множества. Например, сравним два определения: (1) Квадрат есть ромб с прямым углом; (2) Квадрат есть параллелограмм с равными сторонами и прямым углом (избыточное).
Всякое определение есть решение задачи на “доказательство существования”. Например, прямоугольный треугольник есть треугольник с прямым углом; его существование – построение.
Характеристика основных типов ошибок
Отметим типичные ошибки, которые встречаются у учащихся при определении понятий:
1) использование не минимального множества в качестве определяющего, включение логически зависимых свойств (характерно при повторении материала).
Например: а) параллелограмм – четырёхугольник, у которого противоположные стороны равны и параллельны; б) прямая называется перпендикулярной к плоскости, если она, пересекаясь с этой плоскостью, образует прямой угол с каждой прямой, проведённой на плоскости через точку пересечения, вместо: “прямая называется перпендикулярной к плоскости, если она перпендикулярна ко всем прямым этой плоскости”;
2) использование определяемого понятия и в качестве определяющего.
Например, определяется прямой угол не как один из равных смежных углов, а как углы с взаимно перпендикулярными сторонами;
3) тавтология – определяется понятие через само это понятие.
Например, две фигуры называются подобными, если они переводятся одна в другую преобразованием подобия;
4) иногда в определении указывается не то определяющее множество, из которого выделяется определяемое подмножество.
Например, “медиана есть прямая …” вместо ”медиана есть отрезок, соединяющий…”;
5) в определениях, даваемых учащимися, иногда совсем отсутствует определяемое понятие, что возможно лишь тогда, когда учащиеся не приучены давать полные ответы.
Методика исправления ошибок в определениях предполагает, первоначально, выяснения сути допущенных ошибок, а затем предупреждение их повторения.
Статьи по теме:
Особенности овладения лексической сочетаемостью слов детьми дошкольного
возраста
Речь представляет собой своеобразную деятельность, которая, выступая в единстве с мышлением, занимает центральное место в процессе психологического развития ребенка. Речь имеет полифункциональный хар ...
Понятия взаимодействия,
сотрудничества
взаимодействие сотрудничество педагог дошкольный Сегодня, признав приоритет семейного воспитания перед общественным, возложив ответственность за воспитание детей на родителей мы понимаем, что это тре ...
Учение Макаренко о коллективе
Латинское слово "коллективус" переводят по-разному - сборище, толпа, совместное собрание, объединение, группа. В современной литературе под коллективом понимается любая организованная групп ...