Заключительный этап формирования понятия – его определение, т.е. принятие условного соглашения. Под определением понимается перечисление необходимых и достаточных признаков понятия, сведённых в связное предложение (речевое или символическое).
Способы определения понятий
Первоначально выделяют неопределяемые понятия, на основании которых определяются математические понятия следующими способами:
1) через ближайший род и видовое отличие: а) дескриптивное (выясняющее процесс, при помощи которого определение построено, или описывающее внутреннее строение в зависимости от тех операций, при помощи которых данное определение было построено из неопределяемых понятий); б) конструктивное (или генетическое), указывающее происхождение понятия.
Например: а) прямоугольник – это параллелограмм, у которого все углы прямые; б) окружностью называется фигура, которая состоит из всех точек плоскости, равноудалённых от данной точки. Эта точка называется центром окружности.
2) индуктивно. Например, определение арифметической прогрессии:
3) через абстракцию. Например, натуральное число – характеристика классов эквивалентных конечных множеств;
4) аксиоматическое (косвенное определение). Например, определение площади фигуры в геометрии: для простых фигур площадь – это положительная величина, численное значение которой обладает следующими свойствами: а) равные фигуры имеют равные площади; б) если фигура разбивается на части, являющиеся простыми фигурами, то площадь этой фигуры равна сумме площадей её частей; в) площадь квадрата со стороной, равной единице измерения, равна единице.
Явные и неявные определения
Определения подразделяются на:
а) явные, в которых чётко выделены определяемое и определяющие понятия (например, определение через ближайший род и видовое отличие);
б) неявные, которые строятся по принципу замены одного понятия другим с более широким объёмом и окончание цепочки есть неопределяемое понятие, т.е. формально-логическое определение (например, квадрат – ромб с прямым углом; ромб – параллелограмм с равными смежными сторонами; параллелограмм – четырёхугольник, с попарно параллельными сторонами; четырёхугольник – фигура, состоящая из 4 углов, 4 вершин, 4 сторон). В школьных определениях чаще всего практикуется первый способ, схема которого такова: имеем множества и некоторое свойство тогда
где , ;
Основное требование при построение определений: определяемое множество должно быть подмножеством минимального множества. Например, сравним два определения: (1) Квадрат есть ромб с прямым углом; (2) Квадрат есть параллелограмм с равными сторонами и прямым углом (избыточное).
Всякое определение есть решение задачи на “доказательство существования”. Например, прямоугольный треугольник есть треугольник с прямым углом; его существование – построение.
Характеристика основных типов ошибок
Отметим типичные ошибки, которые встречаются у учащихся при определении понятий:
1) использование не минимального множества в качестве определяющего, включение логически зависимых свойств (характерно при повторении материала).
Например: а) параллелограмм – четырёхугольник, у которого противоположные стороны равны и параллельны; б) прямая называется перпендикулярной к плоскости, если она, пересекаясь с этой плоскостью, образует прямой угол с каждой прямой, проведённой на плоскости через точку пересечения, вместо: “прямая называется перпендикулярной к плоскости, если она перпендикулярна ко всем прямым этой плоскости”;
2) использование определяемого понятия и в качестве определяющего.
Например, определяется прямой угол не как один из равных смежных углов, а как углы с взаимно перпендикулярными сторонами;
3) тавтология – определяется понятие через само это понятие.
Например, две фигуры называются подобными, если они переводятся одна в другую преобразованием подобия;
4) иногда в определении указывается не то определяющее множество, из которого выделяется определяемое подмножество.
Например, “медиана есть прямая …” вместо ”медиана есть отрезок, соединяющий…”;
5) в определениях, даваемых учащимися, иногда совсем отсутствует определяемое понятие, что возможно лишь тогда, когда учащиеся не приучены давать полные ответы.
Методика исправления ошибок в определениях предполагает, первоначально, выяснения сути допущенных ошибок, а затем предупреждение их повторения.
Статьи по теме:
Гиперсоциализирующее воспитание
«Выражается в тревожно-мнительной концентрации родителя на социальном статусе ребенка, его успехах и достижениях, отношении к нему сверстников и месте, занимаемом в группе; на состоянии здоровья ребе ...
Задачи и принципы социальной педагогики
Задачи социопедагогики · осуществление социально-педагогической оценки (экспертизы) деятельности государства, общественных организаций, движений, партий, а также учреждений и коллективов; · исследова ...
Организация учебно-воспитательного процесса в церковно-приходских и земских
школах
Внутренний строй жизнедеятельности данных типов школ был направлен на практическое осуществление поставленных перед ними задач. Так, в церковно-приходской школе реализация образовательных задач являл ...