При обобщающем повторении темы «Многоугольники» происходит сопоставление понятий треугольник, параллелограмм, прямоугольник, ромб, квадрат, трапеция, выясняются связи между ними. Эти понятия включаются в новые отношения, учащиеся устанавливают иерархию понятий. Результатом обобщения может служить схема.
Методы работы с таблицами и схемами различны: учитель проводит беседу, выразив ее результаты в виде схемы; знакомит учащихся с планом беседы, а затем по этому плану проводит ее; знакомит учащихся со схемой, по которой они самостоятельно проводят обобщение, предлагает учащимся самостоятельно обобщить материал и выразить результаты в виде схемы.
Рассмотрев эту схему с учащимися, учитель предлагает серию вопросов:
1.Как определить ромб через четырехугольник, квадрат через четырехугольник, квадрат через ромб?
2. Можно ли определить ромб через прямоугольник?
3. Что является пересечением множества всех прямоугольников и множества всех ромбов?
Методика организации работы учащихся по данной теме может быть и другой. Например, учитель может лишь определить цель работы и указать основные вопросы, на которые учащиеся должны найти ответы; определить не только цель работы и перечень вопросов, но и раскрыть этапы и методику работы над этими вопросами.
При обобщающем повторении на уровне теорий дается определенная трактовка изученным понятиям с позиции тех или иных фундаментальных теорий, входящих в содержание математических курсов, при этом строится единая, общая форма многообразия частных фактов, явлений понятий. Значительное внимание уделяется происхождению понятий. Школьники устанавливают общие закономерности, причинно-следственные отношения, обобщают и конкретизируют материал, применяют общие положения к конкретным фактам. Материал, выносимый на обобщающее повторение на уровне теорий, должен представлять собой логическую систему, вопросы которой объединены той или иной фундаментальной теорией.
Обобщающее повторение на уровне теорий освещает полученные знания не только в плане внутрипредметных, но и межпредметных связей, так как многие понятия различных учебных предметов получают единую трактовку с позиций одной какой-либо теории.
Методика организации урока повторения по данной теме представлена к конспекте урока.
Урок обобщения и систематизации знаний по теме "Многоугольники"
Место урока в учебном плане: итоговое повторение по геометрии.
Тип урока: урок обобщения и систематизации знаний.
Цели урока: повторение изученного материала по теме "Многоугольники", подготовка к курсу стереометрии по теме "Многогранники", отработка навыков применения формул для нахождения площадей.
Задачи урока:
Образовательные: закрепление определений по данной теме, формирование умений и навыков нахождения площадей.
Развивающие: развитие логического мышления, памяти, внимания, познавательного интереса.
Воспитательные: воспитание активности, настойчивости в достижении цели; привитие учащимся навыков самостоятельной работы.
Форма работы на уроке: индивидуальная, групповая, коллективная, устная, письменная.
Оборудование урока: карточки с заданиями.
План урока
1. Сообщение темы и постановка целей урока. - 1 мин.
2. Актуализация знаний учащихся. - 5 мин.
3. Практическая работа. - 15-20 мин.
4. Рекламная пауза. - 5 мин.
5. Закрепление знаний. Конкурс "Самый находчивый". 10 мин.
6. Подведение итогов урока. - 3 мин.
7. Домашнее задание - 1 мин.
Ход урока
1. Сообщение темы и постановка целей урока. Учитель: Здравствуйте, ребята! Сегодня на уроке мы вспомним определения многоугольников, их свойства, признаки, будем совершенствовать навыки распознавания на чертежах многоугольников, их элементов, совершенствовать навыки в измерениях необходимых элементов для нахождения площадей многоугольников; учиться отстаивать свою точку зрения в конкурсе "Самый находчивый".
Статьи по теме:
Подготовка к исследовательской работе
Исследовательская работа предполагает выбор проблемы, ее теоретическое изучение, опытно-экспериментальную деятельность, обоснование научно-методических выводов и рекомендаций. В университете ее орг ...
Метод геометрических мест
Математическая сущность метода геометрических мест весьма проста. Она состоит в том, что искомая точка определяется как точка пересечения некоторых двух геометрических мест (или иногда как точка пере ...
Формирующий эксперимент – формирование у школьников критического отношения
к информации, полученной по телевидению
Данная экспериментальная часть работы посвящена непосредственно формированию у младших школьников умения критически воспринимать информацию, полученную по телевизору. Для эксперимента выбраны ученики ...