Методические рекомендации по обучению решению задач на построение

Страница 2

Сделав чертеж произвольного треугольника, учащиеся составляют план построения и при соответствующем выборе данных получают два решения. Они видят необходимость доказательства (проверки, какой из полученных треугольников является искомым), а также и необходимость исследования (всегда ли получим два решения?). Здесь естественно выделяются все этапы и очевидна их целесообразность. Если учащиеся хорошо владеют основными построениями, больших затруднений в оформлении решений они не испытывают.

Эта задача на построение является хорошим примером, показывающим связь между числом решений задачи на построение треугольника по определенным данным и признаками равенства треугольников.

При решении задач на построение параллелограммов хорошим примером для повторения общей схемы будет задача: “Построить параллелограмм по стороне и двум диагоналям”.

После того как схема решения задачи на построение объяснена учащимся, этой схемы следует придерживаться при решении всех дальнейших задач на построение.

Тем не менее, необязательно все задачи решать, строго придерживаясь схемы с подробным описанием всех этапов. Ученики проводят анализ лишь тогда, когда решение задачи не очевидно, доказательство – когда в нем есть необходимость.

Усвоение учащимися общей схемы имеет большое значение не только для решения задач на построение. С методической точки зрения и при решении арифметических задач, и при решении задач на составление уравнений мы пользуемся теми же четырьмя этапами, что и при решении задач на построение.

Остановимся более подробно на рассмотрении этапа “исследование”. Каждая задача на построение включает в себя требование построить геометрическую фигуру, удовлетворяющую определенным условиям, которые в большинстве своем задаются размерами или положением некоторых геометрических образов. Условия задач формулируются в самом общем виде, а поэтому исходные данные являются как бы параметрами, принимающими всевозможные допустимые значения. Необходимо учить школьников видеть эти допустимые значения.

Они определяются наиболее естественным образом. Например, в задаче: “Построить треугольник по двум сторонам а и b и углу С между ними” допустимыми значениями для а и b будут всевозможные отрезки, которые можно характеризовать положительными числами, их длинами, а угол С может принимать всевозможные значения от 0° до 180°.

Рассмотрим задачу: “Построить окружность, касающуюся данной окружности в данной на ней точке и данной прямой”. В ней прямая может занимать любое положение на плоскости. Окружностью также может быть любая окружность на плоскости. Но так как окружность характеризуется положением центра и величиной радиуса, то можно сказать, что центром данной окружности может быть любая точка плоскости, а радиусом – любой отрезок, длина которого 0<ℓ<∞.

Иногда рассматривают и направленные окружности, тогда уже радиус может быть и неположительным числом, но подобные случаи обычно оговариваются в условии задачи. Точка также может занимать произвольное положение, но уже не на плоскости, а на данной окружности, так как она обязательно должна принадлежать ей.

Решение задачи на построение считается законченным, если указаны необходимые и достаточные условия, при которых найденное решение является ответом на задачу. Значит, мы при всяком выборе данных должны устанавливать: имеет ли задача решение и если имеет, то сколько. Например: “Построить окружность, проходящую через три данные различные точки”. Если данные точки не лежат на одной прямой, то задача имеет решение и притом только одно; если же точки лежат на одной прямой, то задача решения не имеет.

Переходим теперь к одному из самых существенных, в методическом отношении, вопросов исследования задачи на построение. Как установить и перечислить все те случаи, которые имеют существенное значение для решения данной задачи? Известно, что очень часто учащиеся, решающие ту или иную задачу, особенно на первых порах, пытаются исследовать ее, исходя из вопроса: “А что будет, если…”, придумывая те или иные “если” более или менее произвольно. Необходимо приучать учащихся вести исследование по самому ходу построения. Желая исследовать задачу, надо в последовательном порядке перебрать еще раз те операции, из которых слагается построение, и для каждой из этих операций определить, всегда ли она возможна, какое число точек, отрезков и т. д. эта операция может давать. Таким путем удается сравнительно легко научиться исследованию задачи.

Исследование является составной частью решения. Решение задачи на построение можно считать законченным, если узнаем, сколько искомых фигур получим при определенных условиях, и, в частности, указано, когда получим искомый геометрический образ. Но исследование в задачах на построение, как и исследование при решении других задач по математике, имеет и общеобразовательное значение.

Страницы: 1 2 3

Статьи по теме:

Фронтальная контролирующая беседа
Фронтальная контролирующая беседа, как правило, кратковременна. Вопросы, как и во всякой другой беседе, требуют краткого ответа, поэтому за один такой ответ ученику ставить оценку нельзя. Нужно заран ...

Математические конкурсы и досуги
Дошкольники очень любят соревнования и конкурсы, в том числе математические. Красочно иллюстрированные и музыкально оформленные соревнования доставляют им эстетическую радость, радость победы, радост ...

Гиперсоциализирующее воспитание
«Выражается в тревожно-мнительной концентрации родителя на социальном статусе ребенка, его успехах и достижениях, отношении к нему сверстников и месте, занимаемом в группе; на состоянии здоровья ребе ...

Навигация

Copyright © 2024 - All Rights Reserved - www.lighteducator.ru